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14  Abstract  

15   

16  Recent work  suggests  that metabolic activation and  deactivation of  microbes in  soil  strongly  

17  influences  soil  carbon  (C)  dynamics and  climate feedbacks.  However, f ew  soil  C  models 

18  consider  these transitions.  We  hypothesized  that  microbes’  capacity  to  enter and  exit  dormancy  

19  in response  to  unfavorable and favorable environmental  conditions decreases the  sensitivity  of  

20  microbial  biomass  and cumulative respiration  to  environmental  stress.  To  test  this hypothesis,  

21  we collected data from  a  rewetting  experiment  and used it  to design and  parameterize 

22  dormancy  in an  existing  microbe-based  soil  C  model.  Then we compared  predictions of  

23  microbial  biomass  and soil  heterotrophic respiration  (RH)  under  simulated  cycles of  stressful  

24  (dryness)  and  favorable (wet pulses) conditions.  Because  the  influence  of  moisture  on  microbial  

25  processes  in soil  generally  depends on  temperature,  we collected data  and  tested  predictions  at  
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26  different  temperatures.  When dormancy  was not  taken  into  account,  simulated microbial  

27  biomass and  cumulative microbial  respiration over five years were lower and  decreased  faster  

28  under  lengthening drying-wetting  cycles.  Differences due to dormancy  increased  with 

29  temperature and  with the  length of  the  dry  periods  between wetting  events.  We  conclude that  

30  ignoring  both the  capacity  of microbes to enter  and exit  dormancy  in response  to  the  

31  environment  and  the  consequences of  these  metabolic  responses  for  soil  C  cycling  results in  

32  predictions of  unrealistically  low  RH  under  warming and drying-wetting  cycles.  

33   

34  Keywords:  microbial  dormancy,  microbial  biomass,  soil  heterotrophic  respiration,  drying-wetting  

35  cycle, soil  carbon model.  

36   

37  1.     Introduction  

38   

39  Changes  in global  climate such as warming  and  altered precipitation patterns (Stocker  et  al.  

40  2014)  will  trigger  carbon (C)  cycle feedbacks  with the  capacity  to either  accelerate or  slow  

41  climate change.  Global  soil  respiration (RS),  the  second  largest  terrestrial  carbon flux  to the  

42  atmosphere (~70  Pg  C  y-1;  Raich and Schlesinger,  1992),  has been  increasing  with temperature 

43  (~3.3  Pg  C  y-1  °C-1)  over the  observational  record  of  approximately  5 decades (Bond-Lamberty  

44  and Thomson,  2010;  Hashimoto  et  al.  2015).  RS  responses to warming  are influenced by  soil  

45  moisture.  Although warming  generally  increases RS  (Bond-Lamberty  and Thomson,  2010;  

46  Hashimoto et  al.  2015),  prolonged  droughts  can  offset  the  effects  of  warming  on  RS  

47  (Schindlbacher  et  al.,  2012,  Suseela et  al.,  2012).  In  many  areas of  the  world,  rainfall  events are 

48  becoming  less  frequent  and more extreme  (Stocker,  2014).  In order  to  predict  future  changes  in 

49  RS  and their  potential  to accelerate  climate  change,  we need  to understand the  mechanisms  

50  that  control  the  responses of  RS  to climate.  Generally  50-70%  of  RS  is produced by  microbial  
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51  decomposers (i.e.  heterotrophic r espiration,  RH),  with the  rest  coming  from  plant  roots  and root-

52  associated microbes  (i.e.  autotrophic respiration, R A)  (Bond-Lamberty  et  al.,  2004).  Therefore,  

53  understanding  the  ways in which microbes respond to  changes  in temperature and  moisture  is a 

54  critical  step  towards developing  the  modeling  tools needed  to predict  soil  C-climate feedbacks.  

55   

56  Earth system  models  (ESMs),  which couple terrestrial  C  cycling  (including  soils)  to other  

57  components of  the  global  carbon cycle-climate system,  are powerful  tools for  predicting global  

58  and regional  changes  in biogeochemistry  and  climate.  However,  much  uncertainty  remains  as to 

59  the  magnitude  and even  direction of  carbon cycle feedbacks  to  climate.  Predictions from  the  

60  Coupled  Model  Intercomparison  Project  Phase  5 (CMIP5) suggest  that  by  2100,  terrestrial  

61  ecosystems  could act  as  either  a global  C  sink or  a source  (Friedlingstein et al.,  2014).  None of  

62  these ESMs explicitly  represented  microbial  processes in soil.  Microbes play  a major  role in  

63  regulating the  global  C  cycle (Schimel  et  al.  2007;  Allison  et  al.  2010,  Wieder  et  al.  2013),  and  

64  the  use  of  soil  C  models that  explicitly  represent  microbial  processes (i.e.  ‘microbial-explicit’  

65  models)  is  being  increasingly  explored as an  approach that  could reduce  uncertainty  in 

66  predictions of  terrestrial  C  cycle-climate feedbacks (Todd-Brown et  al.,  2012;  Treseder  et  al.,  

67  2012;  Wieder  et  al.,  2015). M icrobial-explicit  models generally  include a single pool  representing  

68  total  microbial  biomass,  which is used to predict  extracellular enzyme production or  

69  decomposition  of  soil  organic matter.  However,  a large proportion  of  microbes in soil  is generally  

70  metabolically  inactive or  dormant  (Lennon  and  Jones,  2011).  Under  this  state,  microbes almost  

71  entirely  reduce  production of  extracellular enzymes and all  metabolic activities related  to  

72  decomposition  (Blagodatskaya and  Kuzyakov,  2013).  Generally,  less than  10-20%  of  microbes 

73  in soil  are metabolically  active and capable of  driving  soil  biogeochemical  processes  (Lennon  

74  and Jones,  2011).    

75   
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76  Metabolic activation and deactivation of  microbes  in soil  can  affect  RH  (Placella et  al.,  2012;  

77  Aanderud  et  al.,  2015;  Barnard  et  al.,  2015).  Activation of  dormant  cells has been use d to 

78  explain pulses of  RH  after  wetting  dry  soils (a phenomenon  known as  the  Birch effect;  Birch,  

79  1958)  in a  variety  of  ecosystems, i ncluding  grasslands (Bottner,  1985;  Alvarez  et al.,  1998;  

80  Placella et  al.,  2012;  Aanderud  et  al.,  2015;  Barnard et  al.,  2015),  forests (Aanderud  et  al.,  2015;  

81  Salazar-Villegas et  al.,  2016), an d agricultural  fields (Aanderud  et  al.,  2015).  The  pulses  of  RH  

82  that  follow  wetting  of  dry  soils can  contribute  a significant  fraction  of  the  annual  net  C  emissions  

83  from  ecosystems  such  as deciduous forests  (Borken  et  al.  2003),  Mediterranean ecosystems 

84  (Xu  et  al.,  2004;  Placella et al.,  2012)  and  arid/semi-arid e cosystems  (Huxman  et  al.  2004).  

85  These  types of  observations have motivated the  incorporation  of  microbial  dormancy  into some  

86  soil  C  models (e.g.,  Blagodatsky  & R ichter,  1998;  Wang et  al.,  2014;  He  et  al.,  2015).  These 

87  models have modeled  dormancy  either  by  estimating the  active  fraction  of  the  microbial  

88  biomass  pool  (e.g.,  Blagodatsky  & R ichter,  1998)  or  by  explicitly  simulating transfers between 

89  active and dormant  biomass pools (e.g.,  Wang et  al.,  2014;  He  et  al.,  2015).  In  these  models 

90  active microbial  biomass  fraction was assumed  to  depend  on  specific  external  factors  such  as 

91  bioavailable substrate  concentration,  and  typically changed  over  a time scale of  several ho urs to  

92  days.  Although predictions of  soil  C  pools and fluxes from  these models are strongly  dependent  

93  on  the  amounts  of  active and dormant  microbial  biomass,  the  sizes and dynamics of  these pools 

94  in models have rarely  been  directly  tested  against  observations of  active and dormant  microbial  

95  biomass.  This is likely  because the  measurements needed  to directly  test  model  predictions of  

96  active and dormant  fractions are  scarce.  Predictions from  models that  explicitly  represent  

97  dormancy  are generally  tested against  observations of  total  microbial  biomass (e.g.,  Stolpovsky  

98  et al.,  2011;  Wang  et  al.,  2014),  RH  (He  et  al.,  2015; Wang  et  al.,  2015),  or  litter decomposition  

99  (Hunt,  1977).  Because of  the  strong  link  between RH  and the  amount  of  active microbial  

100  biomass in soil  (Placella et  al.,  2012;  Aanderud  et  al.,  2015;  Barnard et  al.,  2015),  it  seems 

101  reasonable to  expect  that  models that  are  designed  and calibrated  to capture fluctuations  of  
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102  active and dormant  microbial  biomass in soil  would be able to  predict  RH  with higher  fidelity  than  

103  models that  do  not.   

104   

105  In this study  we used a model-data  comparison  to quantify  the  implications,  in terms  of  RH, of  

106  including  dormancy  in a microbial-explicit  soil  C  model.  To  do  this,  we measured RH  and  active 

107  and dormant  microbial  biomass  before,  during,  and after  several r ewetting  events.  We  used  

108  these data to parameterize an explicit  representation  of  microbial  dormancy  in an existing  

109  microbial-explicit  soil  C  model  that  has previously  been  applied  at both ecosystem and  global  

110  scales (Sulman  et  al.,  2014).  To our  knowledge,  this is the  first  time  that  a microbial  model  that  

111  explicitly  represents  dormancy  has been  calibrated  with empirical  data  of  active and dormant  

112  microbial  biomass  in soil.  In  designing the  dormancy  model,  we attempted  to build on previous 

113  model  implementations in two ways.  First,  we represented  dormancy  and activation in  a way  

114  that  integrated  the  features of  the  microbial  growth environment,  including  chemical  factors such 

115  as substrate availability  and quality  along  with physical  factors  such  as soil  moisture and  

116  temperature.  In  order  to reduce  the  number  of  assumptions  specific to environmental  factors we 

117  designed the  model  to calculate activation and dormancy  using  potential m icrobial  growth rate  

118  rather  than functions  tied  to i ndividual  environmental  factors such  as  substrate concentration. 

119  Second,  to match the  rapid changes in active microbial  biomass  fraction  observed  in 

120  experiments,  we designed the  model  to  simulate  these changes  over time scales of  less than 

121  one hour,  assuming  that  active and dormant  fractions of  microbial  biomass  adjusted  quickly  to  

122  an  equilibrium  determined by  environmental  conditions.  To  test  the  generalizability  of the  

123  relationship between RH  and microbial  biomass and  activity  across soil  types,  we compared  

124  soils from  different  regions and ecosystems.  Because temperature  is important  for  microbial  

125  activity  in soil  (Allison  et al.  2010,  Salazar-Villegas et  al.  2016),  we compared  soils acclimated  to  

126  different  temperatures.  We  compared  predictions from  the  dormancy  model  with predictions 

127  from  a  model  using  the previous structure  in which decomposition  is controlled  by  a single 
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128  active biomass pool.  Because microbial  dormancy  is virtually  ubiquitous in the  microbial  world  

129  (Sussman  and Douthit,  1973), t ransitions between active and  dormant  state are inherently  faster  

130  than microbial  growth (Blagodatskaya and Kuzyakov,  2013),  and  active biomass  has been  

131  shown to be a  better  predictor of  RH  than  total  microbial  biomass  (TMB)  (Alvarez  et al.,  1998;  

132  Placella et  al.,  2012;  Barnard et  al.,  2015;  Salazar-Villegas et  al.,  2016),  we hypothesized  that  

133  pulses of  RH  immediately  following  rewetting  of  dry  soils would be better  explained by  rapid 

134  activation of  dormant  microbes than by  net  growth (i.e.  by  fraction  of  active microbial  biomass,  

135  FAMB,  rather  than  by  TMB),  irrespective of  soil  type  and acclimation temperature.  Also, 

136  because dormancy  is a  strategy  that  allows microbes to  rapidly  respond  to  adverse 

137  environmental  conditions  (e.g.  drought)  and survive (i.e.  no  loss of  microbial  C  biomass),  we 

138  hypothesized  that  incorporation  of  dormancy  into the  soil  C  model  would lead  to  reductions in 

139  the  sensitivity  of  TMB an d (microbially-regulated)  RH  to environmental  stress.  

140   

141  2.     Methods  

142   

143  2.1.  Sampling  sites and  soil  collection  

144   

145  We  tested  our  hypotheses using  soils from  both shrubland and forest,  from  each  of  two regions  

146  with different  mean  annual  temperature (MAT)  and precipitation  (MAP):  1)  the  Coweeta Long  

147  Term  Ecological  Research (LTER)  Network  site,  NC,  35°03'36.0"N  83°25'49.9"W,  with MAT  13  

148  °C and MAP 20 00  mm;  and  2)  the  Purdue  Wildlife  Area  (shrubland soil),  IN,  40°26'45.2"N 

149  87°03'01.8"W,  and the  Ross Biological  Reserve (forest  soil),  IN,  40°24'45.0"N 87°03'46.7"W,  

150  both with MAT  11.4  °C and  MAP 95 3 mm.  Soil  classifications and  properties are  summarized  in 

151  Table 1.  

152   
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153  We  sampled  3  soil  cores  (0-15  cm)  from  each  site  using  a soil  core  sampler  and  slide  hammer  

154  (AMS,  Inc.).  Soil  cores  were taken  every  10  m  along  a linear transect.  Samples were stored  in 

155  double plastic bags,  labeled,  transported  in coolers with ice  packs,  and  stored  in the  laboratory  

156  at 4  °C  for  1-4  weeks.  Soil  structure  was partially  disrupted  during  soil  sampling  and 

157  transportation.  Soils were not  sieved,  but  rocks and  roots were manually  removed  before  each  

158  analysis.  

159   

160  2.2.  Experimental  design  

161   

162  We  measured  RH  and  pools of  total  and active microbial  biomass  in soils at  different  times  (0,  2,  

163  3, and  5 h)  after  a  rewetting  event  (soils were brought  from  10  to  60%  water  holding  capacity,  

164  WHC).   

165   

166  With the  aim  of  having  primarily  dormant  microbial  communities  at  the  beginning  of  the  

167  experiment,  we acclimated  the  soils to  moisture-limited  conditions (10  % WHC)  in sealed  glass 

168  jars  for  2-3 days.  To account for  the  influence  of  temperature  on  respiration  and microbial  

169  activity,  we compared  soils acclimated to two temperatures:  19.5  ±  0.1 °C (hereafter  unheated  

170  soils)  and 28.4 ±  0.6  °C (hereafter  heated  soils).  These  acclimation  temperatures  are  within the  

171  range of  temperatures  commonly  experienced  by  soils in the  sampling  sites during  the  growing  

172  season  (NOAA,  2017).  We  regulated  the  temperature  of  jars in  the  heated and unheated  

173  treatments by  partially  immersing  them  in a  temperature-controlled  water  bath.  We  continuously  

174  monitored  temperatures  inside  the  microcosms with temperature probes  (HOBO,  Onset  

175  Computer  Corporation).  Half  of  the  soil  samples  from  each region  were unheated and  the  other  

176  half  were heated  during  this acclimation period.   

177   
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178  After  acclimation,  we increased  soil  moisture  to  60%  of  WHC  (optimum  for  microbial  processes)  

179  by  homogeneously  adding  sterile, deionized  water  to  the  soils with a sterile syringe  through a  

180  septum.  We  estimated  WHC  and gravimetric moisture content  of  all  soils (each  core 

181  individually)  before acclimation,  and monitored  changes  in soil  moisture  after  rewetting  by  

182  weight.  We  estimated  WHC  as the  water  retained  in soils after  being  saturated and  then  free-

183  drained for  24  h  (similar  to  Clemente  et  al.,  2008).  

184   

185  After  rewetting  the  soils,  we monitored  RH,  total  microbial  biomass,  and its active and dormant  

186  fractions.  Because  the  method that  we used to  measure microbial  biomass is destructive (see  

187  section 2.4),  we used different  sample  units  for  RH  and for  microbial  biomass  (total,  active, and 

188  dormant). For  example,  we acclimated unheated  grassland soil  from  Indiana  as described 

189  above. After  rewetting,  we used three  sample units to  measure  RH  (section  2.3)  and  12  sample 

190  units  (3  per  each  time  point)  to measure  total  and  active  microbial  biomass  (section  2.4).     

191   

192  2.3.  Soil  respiration  measurements  

193   

194  To  measure RH  in microcosms  at  different  times after  water  and  substrate additions,  we used an  

195  Infrared  Gas  analyzer (EGM-4, PP sy stems)  connected to a  set  of  valves, each valve being  

196  connected  to  a sample unit  (Fig. S 1).  Each  sample unit  was a 0.8 L  glass jar with 25 g of  soil  

197  (dry  weight),  connected  to a vessel  with 12 g  of  soda lime.  The  soda  lime allowed  the  

198  replacement  of  the  gas  sampled  from  the  jars  (0.1  L min-1,  2 min every  1 h)  with CO2-free  air.  

199  Valves were opened  and  closed by  an  AC/DC  controller (SDM16AC,  Campbell  Sci.)  that  was 

200  connected  to  a datalogger  (CR1000,  Campbell  Sci.).  The  datalogger  was also connected  to  the  

201  IRGA an d  stored  CO2  concentration  measurements every  second.  We  collected the  data from  

202  the  datalogger  at  the  end  of  each run,  one run  being  the  time  from  a  few  hours before  the  

203  rewetting  event  to  the  end of  the  substrate-induced respiration  period  (see  next  section).  We  
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204  monitored  16  units,  i.e.  15 samples  and one  empty  jar (control),  in each run. Each  valve was 

205  programmed  (software package  LoggerNet  3.4.1)  to  be  open  for  2  min.  The valve connected  to  

206  an  empty  jar  was opened between samples,  so  that  in one  hour  each  of  the  15  units  was 

207  sampled  once  (2  min  each), an d the  empty  jar  was sampled  15  times  (2  min each).  

208   

209  We  calculated  RH  based  on  the  hourly  (t=1  h)  differences in  CO2  concentration  in each jar  (Ci-Ci-

210  1),  the  volume of  the  microcosm  headspace (V=0.8 L),  and  the  dry  mass of  the  soil  (W=25  g).  

211   

    
    

          (1)  
  

212   

213  We  measured  Ci  in ppm  and transformed  it  to  g  C L -1  using  the  ideal  gas equation  (as  in Gul  et  

214  al.,  2012). We  calculated  R     1 
H in g C m-2 h-  by  taking into account  the  bulk  density  of  the  soils 

215  from  each  site  (Table 1)  and specifying  a  depth of  15  cm.   

216   

217  2.4.  Estimation of  microbial  parameters  

218   

219  We  estimated  TMB an d its active and dormant  fractions using  the  kinetic approach proposed by  

220  Panikov  and Sizova (1996).  Briefly,  we stimulated  substrate-induced respiration rates by  

221  homogeneously  spreading  a solution  (1  mL  per  jar)  containing  10  mg glucose, 1.90  mg (NH4) 

222  SO4,  2.25  mg  K2HPO4,  and  3.62  mg MgSO4  per  gram  of  soil  (as  in Salazar et  al.,  2016).  We  

223  represented  substrate-induced respiration rates  as a function  of  initial  respiration rates  coupled  

224  (RC)  and  uncoupled  (RU)  with microbial  growth, microbial  specific growth rate (μm),  and time  (t).  

225   

                      (2)  

226   



 

  

10 

227  We  estimated  RU, RC,  and μm  by  fitting  (gnls  function  in R 3.2.3)  this model  to our  observations 

228  of  RH  (t)  (as in  Wutzler  et  al.,  2012).  To  meet  assumptions  of  the  method,  we did not  consider  

229  data points  outside  the  exponential  phase  of  R .  We  used  R2 
H  as an  indicator  of  goodness-of-fit  

230  (to  the  linearized  log(RH);  Table S1).  In the  few  cases (see  Table S1)  where the  observed  RH  did 

231  not  follow  an  exponential  growth pattern,  the  samples were excluded  from  subsequent  

232  calculations.  After  calculating RU, RC,  and  μm,  we estimated  TMB as:   

233   

             (3)  
      

234   

235  Where  λ represents  the  ratio  between productive (i.e.  coupled  with ATP  synthesis and  growth) 

236  and total  respiration,  and  was assumed  to  be  a  stoichiometric constant  equal  to 0.9,  due its 

237  narrow  range of  variation  across microbial  species (Akimenko et  al.,  1983).  YCO2  is biomass  

238  yield per unit  of  CO2  and  was assumed  to be  constant  and equal  to 1.5  (Payne,  1970).  FAMB i s 

239  the  fraction  of  active microbial  biomass and  is estimated  based  on  the  ratio  between RC  and 

240  total  respiration  (as  in Wutzler et al.,  2012):  

241   

        
      (4)  

          

242   

243   

244  We  estimated  AMB as:   

245   

              (5)  

246 
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247  Estimations  of  RU, RC,  and μm,  and  calculations of  TMB,  AMB,  and FAMB a re summarized  in 

248  Table S1.  We  emphasize that,  even  though  the  statistical  model  is  fitted  to observations of  RH  

249  after  substrate  addition,  the  microbial  parameters (TMB an d FAMB)  estimated  with this 

250  approach reflect  the  time  point immediately  before the  substrate input.  More details about  this  

251  and other  methods to estimate total  and active microbial  biomass  can  be  found  in the  work from  

252  Blagodatskaya and  Kuzyakov  (2013).  

253   

254  2.5.  Statistical  analysis:  rewetting  experiment  

255   

256  To  estimate  the  influence of  acclimation  temperature,  region,  and  ecosystem, as w ell  as TMB  

257  and FAMB on   RH,  we conducted  a  linear model  analysis and selected the  best  explanatory  

258  statistical  model  based  on the  Bayesian  Information  Criterion  (BIC),  which  accounts for  

259  differences in the  number  of  explanatory  factors during model  comparison.  For  model  selection,  

260  we used the  glmulti  package  (Calcagno  and  de  Mazancourt,  2010)  in the  statistical  package R  

261  3.2.3.  We  had  three  replicates per  treatment.  

262   

263  2.6.  Process-based  model  structure and  design  

264   

265  We  conducted  process-based model  simulations  using  a  modified  version of  the  Carbon  

266  Organisms,  Rhizosphere, and  Protection in  the  Soil  Environment  (CORPSE)  model  (Sulman  et  

267  al.,  2014).  The  original  version of  the  model  used  a single microbial  biomass pool  to predict  

268  decomposition  rates:  

269   

  
                  

      (6)  
           

270   
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271  Where  BM  is microbial  biomass,  Ci  is substrate  C,  which is divided into three  chemically-defined 

272  types (labile, chemically  resistant,  and microbial  necromass)  denoted  with the  i  subscript,  T is 

273  temperature,  Vmaxi  is temperature-dependent m aximum  decomposition rate for each subst rate  

274  type,  and   is  soil  moisture expressed  as fraction  of  saturation.   

275   

276  We  modified  the  model  by  splitting  total  microbial  biomass into  active and dormant  fractions.  

277  Only  the  active fraction  was used to predict  organic matter  decomposition:   

278   

       
                

      
  (7)  
                  

279   

280  Active and dormant  fractions had different  biomass turnover and maintenance  respiration rates  

281  (see  Table S2  for  a  full  list  of  parameters).  FAMB w as calculated every  hour based  on  the  

282  assumption  that  microbes become more  active under conditions  that  supported  greater  biomass  

283  accumulation relative to biomass loss.  Potential  biomass accumulation  rate was calculated 

284  using  the  same  functional  form  as the  CORPSE d ecomposition  function,  which is sensitive to  

285  temperature,  moisture,  and  available substrate  C  as described above, but  assuming  microbial  

286  biomass was equal  to  total  substrate  carbon  in order  to calculate  an  upper  limit:  

287   

  
                                   (8) 

  

288   

289  where GB  is potential  microbial  biomass growth rate and  CUEi  is the  microbial  C  use  efficiency  

290  for  each C  type.  GB  was compared  to  a factor  representing  the  potential  loss rate of  microbial  

291  biomass  but  using total  substrate carbon  as a  potential  upper  limit  to microbial  biomass,  as in  

292  Equation  8:  
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293   

   
      (9)  

    

294   

295  Where  LB  is the  AMB l oss rate factor  and Tmic  is the  turnover time of  AMB.  Note that  LB  is 

296  proportional  to total  substrate C rather  than  AMB  or TMB.  While actual  microbial  biomass loss  is 

297  proportional  to AMB, the  potential  biomass growth and  loss  calculations  use  total  substrate C  so 

298  that  the  result  is driven  by  the  properties  of  the  microbial  environment  rather than changing 

299  rapidly  with fluctuations  in microbial  biomass.  TMB as a   function  of  total  soil  organic  C i s 

300  generally  well  constrained (Xu et  al.,  2012),  so we can reasonably  assume  that  potential  TMB  is  

301  proportional  to soil  organic C  while eliminating  unrealistic feedbacks  caused by  using  actual  

302  TMB t o calculate  these factors.  While actual  microbial  biomass  is much  smaller than total  

303  substrate C,  limiting this equation  to  a smaller  fraction  of  total  substrate  C  did not  change  the  

304  model  results,  since  the  factor  was accounted  for  in other  parameters.  FAMB w as calculated 

305  using  a  saturating  function of  the  ratio between GB  and LB:  

306   

               
    (10)            

307   

308  Where  FAMBmax  is maximum  active fraction  and kact  is the  half-saturation  parameter  for  

309  activation.  In  contrast  to previous approaches using  dynamic fluxes between active and dormant  

310  microbial  biomass  pools,  this approach  allows the  model  to respond  very  rapidly  to changes  in 

311  environmental  conditions,  which is consistent  with observations showing  that microbial  biomass  

312  can  change from  dormant  to active over time  scales of  an  hour  or  less  (Blagodatskaya 

313  Kuzyakov,  2013).  Biologically,  this equation  represents the  equilibrium  state of  a microbial  
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314  community  balancing  the  benefit  of  biomass growth against the  cost  of  biomass  loss.  Because  a  

315  diverse community  contains some t axa  that  activate rapidly  and others  that  activate more  

316  conservatively,  the  rate  of  FAMB i ncrease declines  as conditions become  more  optimal  for  

317  growth, reflecting  the  shift  of  the  still-dormant  portion  of  the  community  toward more  

318  conservative taxa. FAMBmax  reflects observed  values of  FAMB,  which are less than  100% even  

319  under  optimal  soil  conditions.  Because  it  is  calculated using  the  same  decomposition  and  

320  biomass turnover equations that  control  microbial  biomass,  model  FAMB  integrates  chemical,  

321  biological,  and physical  factors  affecting  decomposition  and microbial  growth rates  (such  as  

322  temperature and  moisture effects  on  decomposition  as well  as substrate availability  and 

323  microbial  carbon  use  efficiency)  as well  as changes affecting microbial  physiology  (such  as 

324  temperature effects  on  active biomass turnover)  without requiring  additional  assumptions about  

325  direct connections  between factors  like  substrate  concentration  and  microbial  activation.  

326   

327  In addition  to  the  representation  of  dormancy  and activation, the  model  was also modified  to 

328  introduce  a  Q10  temperature dependence  in Tmic  and  a linear temperature  dependence in  

329  FAMBmax  and kact.  

330   

331  2.7.  Model  initialization  

332   

333  We  ran  the  model  in the  active/dormant  configuration  described above (hereafter  referred  to as  

334  the  dormancy  model),  and in  a one-pool  configuration  with kact  set  to zero  and  FAMBmax  set to  

335  1.0 so  that  FAMB w as fixed  at  100%  (hereafter  the no-dormancy  model).  In this case,  all  

336  microbial  biomass  was considered  active and the  model  was equivalent  to  the  previous one-

337  pool  version. Both  model  versions were spun up  to equilibrium  under  conditions designed  to  

338  approximate field conditions.  In spinup simulations,  temperature was a  sinusoid function  with a 
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339  period  of  one year,  a  maximum of  25ºC,  and  a minimum of  -10ºC,  based  on the  normal  annual  

340  pattern observed  at  the  Indiana field site.  Soil  moisture  was kept  constant  at 50% of  saturation.  

341  Inputs  were added at  a  constant  rate of  60  mg  C  m-2  h-1.  Parameters were  adjusted  so that  both  

342  model  versions simulated steady  state  annual  average substrate  C  and microbial  biomass,  and 

343  so that  annual  average  total  soil  C  and  TMB  were approximately  the  same for  both the  

344  dormancy  and  no-dormancy  models (Fig. S2).  This allowed  us to attribute differences  between 

345  models  in respiration  rates over time to dormancy  processes rather  than  differences in microbial  

346  biomass at  steady  state.  

347   

348  2.8.  Model  calibration  

349   

350  We  calibrated  the  dormancy  and no-dormancy  models so predictions of  RH  and TMB  in both 

351  models matched  observations. Because only  the  dormancy  model  explicitly  represented  

352  transitions  of  C  between active and dormant  biomass pools,  only  this model  could be calibrated  

353  based  on  observations of  active biomass (section  3.2).  We  selected  parameter  values  (Table 

354  S2)  based  on  our  observations. For  example,  because microbial  biomass  and respiration  

355  changed  with temperature (see  Results),  some  parameters  (e.g.  the Michaelis-Menten  

356  parameter  for  microbial  active fraction,  kact) have  different  values  for  heated  and unheated  soils 

357  (Table S2).  For  the parameters that  did not  change  after  incorporation  of  dormancy,  we used 

358  values from  the  original  version of  the  CORPSE  model ( Sulman  et  al.,  2014).  

359   

360  In the  dormancy  model,  dormant  and  active pools differed  in  their  microbial  turnover rate  (Tmic),  

361  Michaelis-Menten  parameter  (kC,  which controls  the  relationship between microbial  biomass  and 

362  decomposition  rate),  and  the  fraction  of  biomass  turnover  not  converted  to  CO2  via maintenance  

363  respiration  (et)  (see  Table S2 for  a listing  of  all  parameter  values).  For  example, instead of  using  
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364  one single  Tmic  for  all  microbes in  soil,  as  in the  no-dormancy  model,  cells in the  dormant  state  

365  had a lifetime approximately  25  times  longer  than  those  in the  active state,  which is consistent  

366  with observations and  theory  (Lennon  and  Jones,  2011).   

367   

368  2.9.  Model  sensitivity  to  drying  and wetting  cycles  

369   

370  Here we define  sensitivity  as the  percent  change  (e.g.,  in cumulative RH)  after  5  years of  

371  simulated drying-wetting  events.  In each  wetting  event,  soils were wetted  (i.e.  moisture  

372  increased i mmediately  from suboptimal,  10%  WHC,  to  optimal,  60%  WHC,  for  microbial  

373  processes)  and  then  they  dried out  exponentially  (back  to 10% WHC).  To  simulate different  

374  levels of  drying-wetting  stress  we changed  the  length of  the  dry  periods (LDP)  between wetting  

375  events from  0 (i.e.  no  stress) to 100  (i.e.  high  stress)  days.  Because  temperature influenced  

376  microbial  biomass  and respiration (see  Results),  we ran  simulations at  heated and  unheated  

377  conditions.   

378   

379  3.     Results  

380   

381  3.1.   Observed  pulses in  RH  after  rewetting   

382   

383  RH  rapidly  increased i n all  soils after  rewetting  (Fig. S3).  RH  was greater  in heated than in  

384  unheated soils and  increased with the  fraction  of  active biomass (Fig. 1  and Table 2).  RH  was 

385  not  different  among soils from  different  regions  or  ecosystems (Table 2).  Although  the  combined 

386  effect  of  region,  ecosystem,  acclimation  temperature,  TMB,  and FAMB acco unted  for  much of  

387  the  treatment  effects  (P<0.05,  BIC=-98),  differences in  RH  were better  explained (P<0.05,  BIC=-

388  106; best  statistical  model)  by  acclimation temperature  and FAMB al one.  
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389   

390  3.2.  Model  simulations:  repeated  rewetting  events  

391   

392  The  calibrated  model  matched observations of  TMB,  FAMB,  and RH  for  both heated  and  

393  unheated treatments  (Fig. 2).   

394   

395  Incorporation of  dormancy  in the  soil  C  model  changed  predictions  of  TMB an d RH  in response  

396  to drying-wetting  cycles (Fig.  3).  Differences in predictions between the  dormancy  and  no-

397  dormancy  models were larger  for  heated  (Fig. 3)  than unheated  (Fig.  S4) soils.  Both dormancy  

398  and non-dormancy  models predicted  pulses of  microbial  growth when dry  soils were  wetted,  

399  and decreases of  biomass during the  dry  periods  (Fig.  3b),  but  the  magnitude of  net  changes  in 

400  TMB a fter  repeated  drying-wetting events were markedly  different.  After  1 year  of  simulated 

401  drying-wetting  cycles, with 100 dry  days between wetting  events,  the  dormancy  model  predicted  

402  a 17%  decrease  in TMB o f  heated  soils whereas the  no-dormancy  model  predicted  a  drastic 

403  88% decrease (Fig. 3 b).  This  resulted  in different  predictions of  RH  (Fig. 3 a).  The  size of  the  

404  wetting-induced pulse  in RH  predicted  by  the  dormancy  model  during  the  fourth  wetting  event  

405  was approximately  double that  of  the  no-dormancy  model.  Overall,  microbial  biomass and  RH  

406  were more severely  affected  by  drying  stress  when dormancy  was not  taken  into account.   

407   

408  3.4.  Model  simulations:  RH  under  different  levels of drying  stress  

409   

410  Predictions of  cumulative RH  from  the  dormancy  model  were larger  than  those from  the  no-

411  dormancy  model  in all  the drying-wetting  scenarios (Fig. 4 ).  Both the  dormancy  and the  no-

412  dormancy  models predicted  decreases  in cumulative RH  as LDP i ncreased,  but  decreases  in RH  
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413  were greater  when  dormancy  was not  taken  into account  (Fig. 4 ).  Differences in  predictions 

414  between models increased  with the  level  of  stress,  and  were magnified  by  warming  (Fig. 4 ).  The  

415  largest  difference in  predicted  RH  was in  heated  soils with dry  periods  of  100  days between 

416  wetting  events.  Under  these  conditions,  incorporation  of  dormancy  resulted in  predictions of  

417  cumulative RH  43%  larger  than with the  no-dormancy  model.  

418   

419  4. Discussion   

420   

421  Our  results add  to  the  increasing  body  of  evidence  showing  that  a  large  proportion  of  microbes  

422  in soil  are in a  dormant  state  (Lennon  and Jones,  2011),  that  they  can  quickly  enter  and  exit  

423  dormancy  in response  to  changes in  their  environment  (Stenström  et  al.,  2001; Blagodatskaya 

424  and Kuzyakov,  2013),  and that  these metabolic transitions have implications for  soil  C  dynamics 

425  (Bottner,  1985;  Alvarez  et al.,  1998,  Placella et  al.,  2012;  Aanderud  et  al.,  2015;  Barnard  et  al.,  

426  2015;  Salazar-Villegas et  al.,  2016).   

427   

428  Results from  our  rewetting  experiment  support  previous observations  that  dormant  microbes  in 

429  dry  soils rapidly  (few  hours)  become  metabolically active in  response to water  inputs (Placella et  

430  al.,  2012;  Aanderud  et  al.,  2015;  Barnard et  al.,  2015), t hat  warming  can magnify  this effect  

431  (Salazar-Villegas et  al.,  2016), an d that  this  activation helps to explain pulses of  RH  (Placella et  

432  al.,  2012;  Aanderud  et  al.,  2015;  Barnard et  al.,  2015; Salazar-Villegas et  al.,  2016).  The  

433  metabolic responses  of  microbial  communities  to  rewetting  and  warming  were consistent  across 

434  the  soils analyzed  in this study.  This could  be  in part be cause,  despite  differences in  climate  

435  between the  Indiana and  North  Carolina  sites (section  2.1),  all  soils in this study  had similar  

436  physicochemical  properties (Table 1)  and  were from mesic temperate ecosystems, so   microbial  

437  communities may  have been ad apted  to  similar  levels of drying-wetting  stress and to  similar 
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438  temperature ranges.  Although  this relationship remains untested  in many  ecosystems,  the  

439  consistent  response across soils from  different  regions  and  ecosystems  in our  experiment  

440  suggests  that  it  may  be  possible to generalize relationships between RH  and FAMB i n models 

441  across  soil  types.   

442   

443  Although  both  the  dormancy  and the  no-dormancy  models were calibrated  to  match 

444  observations of  RH  and  microbial  biomass,  the  differences in  the  parameters used  for  calibration  

445  suggest  two different  mechanistic explanations for  the  influence  of  soil  microbes on  RH  (Table  

446  S2).  All  microbes  in the  no-dormancy  model  had  the  same  lifespan  and  respired  the  same 

447  amount  of  CO2  per  unit  of  assimilated C.  In  the  dormancy  model,  active microbes could increase  

448  (by  two orders  of  magnitude) their  lifespan  by  entering dormancy  when external  factors  such  as 

449  moisture  became unfavorable. Also,  the  Michaelis-Menten  parameter  (KC),  which controls  the  

450  relationship between microbial  biomass and  decomposition  rate,  was different  by  a factor  of  100 

451  between the  models,  reflecting the  large di fference between active and total  microbial  biomass.  

452  Finally,  in the  dormancy  model  active cells had a lower fraction  of  turnover  not  converted  to  CO2  

453  (et)  than dormant  cells.  This  reflects  the  fact  that  active cells  can  grow  and build up new  

454  biomass,  and  therefore  do not  convert al l  substrate into CO2.  In contrast,  when cells are  

455  dormant  they  do  not  accumulate C  in  biomass, and  a larger  fraction  of  their  C  ends  up  being  

456  respired  (although  at  a much  lower rate  than  when they  are  active; Anderson  and Domsch,  

457  1985).  Taken  together,  these large parameter  differences imply  that  calibrating microbial-explicit  

458  soil  C  models using observations of  TMB cou ld lead  to  unrealistic parameter values and results  

459  if  in reality  only  a small  fraction of  TMB i s actively  involved  in soil  C  decomposition  and RH.  

460   

461  When we changed  the  structure of  the  CORPSE  model  and calibrated  it  (based  on  experimental  

462  data from  our  rewetting  experiment)  to  simulate  microbes entering  and  exiting  dormancy,  TMB  
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463  was significantly  more  resistant  and resilient  to  simulated drying  stress.  A  similar result  was 

464  reported  by  Wang et  al.  (2015)  when comparing  predictions from  the  microbial  enzyme-

465  mediated decomposition  model  with (MEND)  and without (MEND_wod)  dormancy.  In  that  study,  

466  the  authors  did not  compare predictions under  a  drying-wetting  scenario, but at  different  times  

467  after  pulses  of  labile C. Similar to  our  results,  TMB  was less responsive to  changes  in external  

468  conditions when dormancy  was taken  into account.  MEND_wod  predicted  increases  in TMB a  

469  few  (4) days after  the  substrate input,  followed  by sharp  decreases in  TMB a fter  150-270  days.  

470  This no-dormancy  model  (MEND_wod)  overestimated increases in  TMB i mmediately  after  

471  substrate inputs and  overestimated  decreases in TMB a  few  days after  that.  In  contrast,  their  

472  dormancy  model  (MEND)  did a  better  job at  reproducing  observations of  TMB.  In  our  study,  the  

473  no-dormancy  model  also  suggests sharper  decreases in TMB t han the  dormancy  model  under  

474  unfavorable external  conditions.  Taken  together,  these findings suggest  that models that  do  not  

475  take dormancy  into account  do  not  realistically  simulate  TMB r esponses  to environmental  stress 

476  and substrate  availability.  

477   

478  The  amount  of  soil  C  respired  to  the  atmosphere under  stressful  conditions depends  on the  

479  sensitivity  of  microbes  to  the  environment.  In a  previous modeling  experiment  (Tang  and  Riley,  

480  2015),  making the  metabolism  of  soil  microbes more ‘plastic’  to the  environment  (conceptually  

481  homologous to considering  their  capacity  to switch between active and dormant  state),  made 

482  soil  respiration less  responsive to warming.  This  resulted  in predictions of  weaker soil  C-climate 

483  feedbacks  (Tang and Riley,  2015).  In  our  study,  incorporation  of  dormancy  also decreased  the  

484  sensitivity  of  soil  respiration  to  changes  in the  environment.  In  particular,  dormancy  made RH  

485  less sensitive to drying-wetting  stress.  Together,  the  findings from  these  studies suggest  that  

486  the  magnitude  of  soil  C-climate feedbacks  depends on  the  metabolic responses of  soil  microbes  

487  to the  environment.  Under warming  and  long drying-wetting  cycles, our  dormancy  model  
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488  predicts  nearly  double the soil  C  emissions  predicted  by  the  model  that  does  not  take dormancy  

489  into account.     

490   

491  Although  our  results suggest  that  dormancy  is key  to understanding  soil  C  responses to 

492  warming  and  drying-wetting  cycles, the  question  of  timing  remains  open:  when is dormancy  

493  important  for  soil  C  cycling  and when is not?  Given  that  dormancy  is a strategy  to cope with 

494  stress,  it  seems  reasonable to expect  dormancy  to be important  for  soil  C  cycling  under  stressful  

495  conditions other  that  drying-wetting  cycles (e.g. low  C  availability;  Wang et  al.  2015).  Also,  given  

496  the  responsiveness of  microbial  metabolism  to the  environment,  it  seems reasonable to  expect  

497  dormancy  to be  more important  for  soil  C  cycling  under  fluctuating environmental  conditions 

498  than in  fairly  stable environments.  Finally,  given  the  speed  at  which changes between active 

499  and dormant  state  happen (i.e.  hours-to-days;  Blagodatskaya and Kuzyakov,  2013), i t  seems 

500  reasonable to  expect  dormancy  to  be  especially  important  for  soil  C  cycling when environmental  

501  and nutritional  conditions  change quickly  (e.g.  the  birch effect;  Evans et al.  2016).  The  time 

502  scale of  transitions between active and dormant  states  varies among  existing  models,  with 

503  some previous models having  time  scales on  the  order  of  ten  hours  (e.g.  Wang et  al.,  2014)  in  

504  contrast  to  our  model,  which assumed  that  the  microbial  community  adjusted  to  an  optimum  

505  FAMB w ithin a single  hourly  time step.  Testing  these  hypotheses,  especially  under  field 

506  conditions and at  long (months-to-years)  temporal  scales  (since  most  work  on  microbial  activity  

507  in soil  has been  done  in laboratory  conditions and  at  short  temporal  scales; e.g.  Alvarez  et al.,  

508  1998;  Barnard  et  al.,  2015,  and  Salazar-Villegas, et al.,  2016)  will  further  build confidence  in our  

509  ability  to realistically  represent  dormancy  in models.    

510   

511  Overall,  our  results suggest that  as  Earth’s  surface  keeps getting  warmer,  and in  many  places  

512  the  mean LDP  between wetting  events keeps getting  longer  (Stocker,  2014),  microbial  

513  dormancy  will  become increasingly  relevant  for  soil  C-climate feedbacks.  Specifically,  our  
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514  results  suggest  that  under warming  and  long LDP be tween wetting  events,  microbes  in soil  will 

515  respire more  than would be predicted  by  models  that  do  not  take  dormancy  into account.  

516   

517  5. Conclusions  

518   

519  The  capacity  of  microbes  to  enter  and  exit  dormancy  under  alternating  stressful  and  favorable 

520  environmental  conditions  has important  implications for  soil  C  cycling.  Microbial  biomass and  

521  respiration  are  less sensitive to drying-wetting  stress when dormancy  is taken  into account.  

522  Differences  in predictions with and without dormancy  increase with warming  and with LDP.   

523  Overall,  our  results suggest that  models that  do  not consider  microbial  dormancy  could 

524  underestimate  (by  as much as ca.  40%)  RH  responses to  warming  and  drying-wetting  cycles.  

525   
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712  Figure legends  

713   

714  Figure 1. Relationship between RH  and FAMB i n heated (red)  and  unheated  (blue)  soils.  

715   Symbols represent  the  region  (circles and triangles are  North Carolina  and Indiana,  

716  respectively)  and ecosystems  (open  and  closed symbols are forest  and  shrubland, respectively)  

717  where soils were sampled. Each  point represents  mean values for  RH  (n  =  12)  and  FAMB  (n =  

718  3) from  a  given  soil  sample based on   measurements of  subsamples.  Equation of  regression  

719  line:  RH  = 0.39  +  0.05(logitFAMB).  

720   

721  Figure 2. Observed  and predicted  a)  RH,  b)  TMB,  c)  AMB,  and d)  FAMB.  Predictions are from  

722  the  dormancy  and  no-dormancy  models.  Notice  that  predictions of  AMB an d FAMB are  only  

723  from  the  dormancy  model.  

724   

725  Figure 3. Simulated changes  in a)  RH,  b)  total  microbial  biomass,  and  c)  the  fraction of  active 

726  microbial  biomass,  after  repeated  rewetting  events.  Initial  conditions in  these simulations  were 

727  parameterized  based  on  observations of  heated  soils.  We  ran  simulations  for 5  years but  show  

728  results  for  1  year  here  to  make the  differences  between predictions (e.g.  dashed  line  in panel  a)  

729  easier to  see.  Predictions based  on  observations of  unheated  soils are in  Fig.  S4.  

730   

731  Figure 4.  Model  predictions of  cumulative RH  after five years,  with and without  considering  

732  microbial  dormancy.   

733   

734   

735   

736   
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738 Table captions 

739 

740 Table 1. Soil classification and physicochemical properties (USDA, 2017). 

741 

742 Table 2. Significance of temperature, region, ecosystem, TMB and logitFAMB for explaining RH. 

743 Overall, this model explains approximately 50% (R2=0.50, P<0.05) of the variation in RH. FAMB 

744 was transformed to meet homogeneity of variances assumption. 

745 
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Table1 

Table 1. Soil classification and physicochemical properties (USDA, 2017). 

Region Ecosystem Soil Abbreviation Slope pH Bulk SOM 

classification (%) (0-15 cm) density (%)a 

(g cm-3) 

NC Shrubland Reddies fine ReA 0 to 3 6.4 1.40 6 

sandy loam 

Forest Fannin fine FaD 15 to 5.5 1.40 3 

sandy loam 30 

IN Shrubland Rainsville silt RaB2 2 to 6 6.5 1.45 2 

loam 

Forest Richardville RdB2 2 to 6 6.2 1.45 1.5 

silt loam 

2 aSoil organic matter (SOM) is expressed as the percentage, by weight, of the soil material with 

3 diameter < 2 mm. 



 1 

1  Table 2.  Significance of  temperature,  region,  ecosystem,  TMB an d logitFAMB  for  explaining  RH. 

2  Overall,  this  model  explains approximately  50% (R2=0.50,  P<0.05)  of  the  variation  in RH.  FAMB  

3  was transformed  to  meet  homogeneity  of  variances assumption.  

Factor  Estimate  Std. error  t  value  P v alue  

Intercept  0.348  0.055  6.353  < 0.05  

Temperature  -0.090  0.026  -3.473  < 0.05  

Region  0.030  0.232  1.253  0.216  

Ecosystem  0.004  0.027  0.153  0.879  

logit(FAMB)  0.0467  0.010  4.915  < 0.05  

TMB  0.006  0.004  1.452  0.153  

4   

Table2 



   

 
 

 
 

 
 

Figure 

0.
0 

0.
1 

0.
2 

0.
3 

0.
4 

0.
5 

S
oi

l R
es

pi
ra

tio
n,

 R
 H

 (g
 C

 m
-2

 h
 -1 )

 

-8 -7 -6 -5 -4 -3 -2 

logit(fraction of active biomass) 



    

 
 

 
 

   

 
 

 

   

 
 

 

 

 
P

re
di

ct
ed

 R
H

 (g
 C

 m
−2

 h
 −1
) Figure 

0.
0 

0.
1 

0.
2 

0.
3 

0.
4 

a 

Heated 
Unheated 

Dormancy model 
No-dormancy model 

0.0 0.1 0.2 0.3 0.4 
Observed RH (g C m−2 h−1) 

0 
2 

4 
6 

8 
10

 

P
re

di
ct

ed
 T

M
B

 (g
 C

 m
−2

 ) 

b 

0 2 4 6 8 10 
Observed TMB (g C m−2) 

0.
00

 
0.
04

 
0.
08

 
0.
12

 

P
re

di
ct

ed
 lo

g 1
0(

A
M

B
) (

g 
C

 m
−2

 ) 

c 

0.00 0.04 0.08 0.12 
Observed log10(AMB) (g C m−2) 

-8
 
-7

 
-6

 
-5

 
-4

 
-3

 
-2

 

P
re

di
ct

ed
 lo

gi
t(F

A
M

B
)

d 

-8 -7 -6 -5 -4 -3 -2 
Observed logit(FAMB) 



 

 
 

   
   

  
 

 
   

   
   

   
  

 
 

 
   

   
  

Fr
ac

tio
n 

ac
tiv

e 
bi

om
as

s 
TM

B
 (g

 C
 m

-2
) 

R
H

 (g
 C

 m
-2
h-
1 ) 

0.
00

 
0.
04

 
0.
08

0 
2 

4 
6 

8
0.
00

 
0.
10

 
0.
20

 
0.
30Figure 

a Dormancy model 
No-dormancy model 

b 

0.0 0.2 0.4 0.6 0.8 1.0 

c 

Time (years) 



     

 
 

 
 

Figure 

C
um

ul
at

iv
e 

R
H

 (K
g 

C
 m

−2
 h

 −1
) 

50
0 

10
00

 
15
00

 

Dormancy model 
No-dormancy model 
Heated 
Unheated 

0 20 40 60 80 100 

Length of dry period (LDP) between wetting events (days) 



Figure 



 

 
 

 
 

   
  

 
 

   
   

   
   

 
 

 
   

   
 

S
oi

l C
 s

ub
st

ra
te

 (K
gC

 m
2 ) 

TM
B

 (g
 C

 m
-2

) 
R
H

 (g
 C

 m
-2

 h
 −1

) 
1.
0 

1.
2 

1.
4 

1.
6 

1.
85

 
10

 
15

 
20

 
0.
00

 
0.
05

 
0.
10

 
0.
15

 
0.
20Figure Dormancy model

No-dormancy model 

0 5 10 15 20 25 30 

Time (years) 



  

 
 

 
 

 

Figure 

0.
0 

0.
1 

0.
2 

0.
3 

0.
4 

0.
5 

S
oi

l R
es

pi
ra

tio
n,

 R
H

 (g
 C

 m
-2

 h -
1 )

 

0 1 2 3 4 5 

Time after rewetting (h) 



 

 
 

   
   

  
 

 
   

   
   

   
  

 
 

 
   

   
  

Fr
ac

tio
n 

ac
tiv

e 
bi

om
as

s 
TM

B
 (g

 C
 m

-2
) 

R
H

 (g
 C

 m
-2
h-
1 ) 

0.
00

 
0.
04

 
0.
08

0 
2 

4 
6 

8 
0.
00

 
0.
05

 
0.
10

 
0.
15

 
0.
20Figure a 

Dormancy model 
No-dormancy model 

b 

0.0 0.2 0.4 0.6 0.8 1.0 

c 

Time (years) 



  

Supplementary Material for online publication only
Click here to download Supplementary Material for online publication only: Supplementary_Material_revised_AS_JSD.docx 

http://ees.elsevier.com/sbb/download.aspx?id=523974&guid=1ba60d3b-e7fc-4471-9313-195e5be81a79&scheme=1



